Integer Overflow

Lecture 8 Section 2.5

Robb T. Koether

Hampden-Sydney College

Mon, Jan 27, 2014

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- Unsigned Addition and Subtraction
- 4 Assignment

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- 3 Unsigned Addition and Subtraction
- 4 Assignment

Addition of Signed Integers

- To add signed integers,
 - Express any negative values in two's complement form.
 - Add them, using the ordinary rules of addition.
 - To catch overflow, check two bits:
 - The carry-in bit of the last column.
 - The carry-out bit of the last column.

Subtraction of Signed Integers

- To subtract signed integers,
 - Express any negative values in two's complement form.
 - Replace the subtrahend with its two's complement.
 - Add them, using the ordinary rules of addition.
 - To catch overflow, check two bits:
 - The carry-in bit of the last column.
 - The carry-out bit of the last column.

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- Unsigned Addition and Subtraction
- 4 Assignment

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- Unsigned Addition and Subtraction
- 4 Assignment

Signed Overflow

- If the correct result is too large to fit in the allotted space, the condition is called overflow.
- Integer overflow under addition occurs when
 - The sum of two positive integers is too large.
 - The sum of two negative integers is too large.

а	b	a+b	c-in	c-out	Valid?
Р	Р	Р	0	0	Yes
Р	Р	Ν	1	0	No
Р	Ν	Р	1	1	Yes
Р	Ν	Ν	0	0	Yes
Ν	Р	Р	1	1	Yes
Ν	Р	Ν	0	0	Yes
Ν	Ν	Р	0	1	No
Ν	Ν	Ν	1	1	Yes

• What characterizes overflow?

а	b	a+b	c-in	c-out	Valid?
Р	Р	Р	0	0	Yes
P	P	Ν	1	0	No
Р	Ν	Р	1	1	Yes
Р	Ν	Ν	0	0	Yes
Ν	Р	Р	1	1	Yes
Ν	Р	Ν	0	0	Yes
Ν	Ν	P	0	1	No
Ν	Ν	Ν	1	1	Yes

• What characterizes overflow?

 Integer overflow under addition of signed integers is detected when the carry-in bit does not match the carry-out bit in the high-order position.

• Using 8-bit signed integers, when we add 80 + 90 we get -86.

$$127 + 1 = 01111111 + 00000001$$

$$= 10000000$$

$$= -128.$$

$$(127 + 1) - 256 = -128.$$

• Using 8-bit signed integers, when we add (-80) + (-90) we get 86.

$$(-128) + (-1) = 10000000 + 111111111$$

= 01111111
= 127.
 $((-128) + (-1)) + 256 = 127.$

The x86 Processor

- The x86 processor has a 32-bit EFLAGS register.
- Among the 32 bits are four flags:
 - Carry Flag (CF) Set if an arithmetic operation generates a carry or a borrow out of the most-significant bit of the result; cleared otherwise. This flag indicates an overflow condition for unsigned-integer arithmetic.
 - Sign Flag (SF) Set equal to the most-significant bit of the result, which is the sign bit of a signed integer (0 indicates a positive value and 1 indicates a negative value).
 - Overflag Flag (OF) Set if the integer result is too large a positive number or too small a negative number (excluding the sign bit) to fit in the destination operand; cleared otherwise. This flag indicates an overflow condition for signed-integer (two's complement) arithmetic.
 - Zero Flag (ZF) Set if the result is zero; cleared otherwise.

Signed Addition

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	0	0	0	0
01000000	64	01100000	96	10100000	-96	0	1	1	0
01000000	64	11100000	-32	00100000	32	1	0	0	0
00100000	32	11000000	-64	11100000	-32	0	1	0	0
11100000	-32	01000000	64	00100000	32	1	0	0	0
11000000	-64	00100000	32	11100000	-32	0	1	0	0
11000000	-64	10100000	-96	01100000	96	1	0	1	0
11000000	-64	11100000	-32	10100000	-96	1	1	0	0

Signed Addition

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	0	0	0	0
01000000	64	01100000	96	10100000	-96	0	1	1	0
01000000	64	11100000	-32	00100000	32	1	0	0	0
00100000	32	11000000	-64	11100000	-32	0	1	0	0
11100000	-32	01000000	64	00100000	32	1	0	0	0
11000000	-64	00100000	32	11100000	-32	0	1	0	0
11000000	-64	10100000	-96	01100000	96	1	0	1	0
11000000	-64	11100000	-32	10100000	-96	1	1	0	0

The Relational and Equality Operators

Mnemonic	Condition Tested For	Status Flags Setting
Ο	Overflow	OF = 1
NO	No Overflow	OF = 0
В	Below	CF = 1
NB	Not Below	CF = 0
E	Equal	ZF = 1
NE	Not Equal	ZF = 0
S	Sign	SF = 1
NS	No Sign	SF = 0
BE	Below or Equal	(CF OR ZF) = 1
NBE	Neither Below nor Equal	(CF OR ZF) = 0
L	Less	(SF XOR OF) = 1
NL	Not Less	(SF XOR OF) = 0
LE	Less or Equal	(SF XOR OF) OR ZF = 1
NLE	Neither Less nor Equal	(SF XOR OF) OR ZF = 0

Overflow/No Overflow

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	0	0	0	0
01000000	64	01100000	96	10100000	-96	0	1	1	0
01000000	64	11100000	-32	00100000	32	1	0	0	0
00100000	32	11000000	-64	11100000	-32	0	1	0	0
11100000	-32	01000000	64	00100000	32	1	0	0	0
11000000	-64	00100000	32	11100000	-32	0	1	0	0
11000000	-64	10100000	-96	01100000	96	1	0	1	0
11000000	-64	11100000	-32	10100000	-96	1	1	0	0

Overflow/No Overflow (OF = 1/0)

Sign/No Sign

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	0	0	0	0
01000000	64	01100000	96	10100000	-96	0	1	1	0
01000000	64	11100000	-32	00100000	32	1	0	0	0
00100000	32	11000000	-64	11100000	-32	0	1	0	0
11100000	-32	01000000	64	00100000	32	1	0	0	0
11000000	-64	00100000	32	11100000	-32	0	1	0	0
11000000	-64	10100000	-96	01100000	96	1	0	1	0
11000000	-64	11100000	-32	10100000	-96	1	1	0	0

• Sign/No Sign (SF = 1/0)

Less/Not Less

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	0	0	0	0
01000000	64	01100000	96	10100000	-96	0	1	1	0
01000000	64	11100000	-32	00100000	32	1	0	0	0
00100000	32	11000000	-64	11100000	-32	0	1	0	0
11100000	-32	01000000	64	00100000	32	1	0	0	0
11000000	-64	00100000	32	11100000	-32	0	1	0	0
11000000	-64	10100000	-96	01100000	96	1	0	1	0
11000000	-64	11100000	-32	10100000	-96	1	1	0	0

• Less/Not Less ((SF XOR OF) = 1/0)

title

Explain why the combinations

$$CF = 1$$
, $SF = 1$, $OF = 1$
 $CF = 0$, $SF = 0$, $OF = 1$

never occur.

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- 3 Unsigned Addition and Subtraction
- 4 Assignment

Signed Overflow of Subtraction

 Overflow occurs under signed subtraction when the carry-in bit does not match the carry-out bit in the high-order position.

Signed Subtraction

а		b		a – b		CF	SF	OF	ZF
01000000	64	00100000	32	00100000	32	1	0	0	0
00100000	32	01000000	64	11100000	-32	0	1	0	0
01000000	64	11100000	-32	01100000	96	0	0	0	0
01000000	64	10100000	-96	10100000	-96	0	1	1	0
11000000	-64	01100000	96	01100000	96	1	0	1	0
11000000	-64	00100000	32	10100000	-96	1	1	0	0
11100000	-32	11000000	-64	00100000	32	1	0	0	0
11000000	-64	11100000	-32	11100000	-32	0	1	0	0

Overflow/No Overflow

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	00100000	32	1	0	0	0
00100000	32	01000000	64	11100000	-32	0	1	0	0
01000000	64	11100000	-32	01100000	96	0	0	0	0
01000000	64	10100000	-96	10100000	-96	0	1	1	0
11000000	-64	01100000	96	01100000	96	1	0	1	0
11000000	-64	00100000	32	10100000	-96	1	1	0	0
11100000	-32	11000000	-64	00100000	32	1	0	0	0
11000000	-64	11100000	-32	11100000	-32	0	1	0	0

Overflow/No Overflow (OF = 1/0)

Less/Not Less

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	00100000	32	1	0	0	0
00100000	32	01000000	64	11100000	-32	0	1	0	0
01000000	64	11100000	-32	01100000	96	0	0	0	0
01000000	64	10100000	-96	10100000	-96	0	1	1	0
11000000	-64	01100000	96	01100000	96	1	0	1	0
11000000	-64	00100000	32	10100000	-96	1	1	0	0
11100000	-32	11000000	-64	00100000	32	1	0	0	0
11000000	-64	11100000	-32	11100000	-32	0	1	0	0

• Less/Not Less ((SF XOR OF) = 1/0)

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- Unsigned Addition and Subtraction
- 4 Assignment

Unsigned Addition

- Overflow occurs under unsigned subtraction when the carry-out bit in the high-order position is 1.
- Overflow occurs under unsigned subtraction when the carry-out bit in the high-order position is 0.

Unigned Addition

а		b		a+b		CF	SF	OF	ZF
01000000	64	00100000	32	01100000	96	1	0	0	0
01000000	64	01100000	96	10100000	160	0	1	0	0
01000000	64	10100000	160	11100000	224	0	0	0	0
01100000	96	11100000	224	01000000	64	0	1	1	0
10100000	160	11000000	192	01100000	96	1	0	1	0
11100000	224	11100000	224	11000000	192	1	1	0	0

Outline

- Signed Addition and Subtraction
- Signed Overflow
 - Signed Overflow of Addition
 - Signed Overflow of Subtraction
- Unsigned Addition and Subtraction
- 4 Assignment

Collected

Collected

• Sec. 2.3: 11, 23, 40.

• Sec. 2.4: 15, 19.

• Sec. 2.5: 2, 18.

Assignment

Assignment

- Read Section 2.5.
- Perform signed addition and check for overflow.

```
10010011 01110010
+11011101 +01110101
```

Perform signed subtraction and check for overflow.

```
10010011 01110010
-11011101 -01110101
```

Repeat the above sets using unsigned addition and subtraction.